Kullanıcı Adı

Şifre


          Şifremi Unuttum?



İletişim

  • 0216 550 46 26
  • 0531 409 17 67


Etiket Bulutu

İstanbul Özel Ders ağaç kurdu sabit oranlar kanunu transfer harcamaları bağ çubuğu hileci ilk okuma yazma baskı nedir sırasında ayakkabıcı delik şiirde tema kamu yönetimi deşarj paletli 5. sınıf performans ödevleri kibar manometreler otomasyon cihazı grup çalışması ve özellikleri monat anemometrenin ardı sıra 17 ağustos depremi ücret sistemleri ekonomi tez gözükme otozomal resesif enflasyon etkisi epigram eksilen sınanma savaş ve insan atatürkün getirdiği yenilikler 1kg kaç lt büro staj bilgileri psikiyatr tanzimat edebiyatında şiir saksonya yalın durum med-cezir fiili bozuk stres örnek olmak melodrama gezginci dolaylı vergiler reform hareketleri adolf hitler beden dili boyalı oyun vermek kavramlar arasındaki ilişkiler birimler bayragımızın özellikleri ne ağır top dünya neden yuvarlak sezon totaliter rejim yapay göller yargılamak hegomonya almanyada sayılar nasıl sessiz tehlike amca türkiyenin biyolojik zenginlikleri aslan sütü sebzeci geçerlilik ve güvenirlik söz almak mütecasir ezme sıcaklık ölçme aletleri neftî güneş sistemi derinden sosyal bir sistem olarak toplum köktürkler atatürk inkılapları ölçü birimleri vatanımız sanayide alınacak önlemler miyokart bor karbürler fırça çekmek askerlik ve matematik acil alan hızı eteneli alternatif akımı kim üstüne atmak alfabemiz tamlamalar baskın lm35 devresi burs kazanan yapak resimde peyzaj nedir erol özer çiçekçi dondurmak


ÇARPANLARA AYIRMA


Ödev Bilgileri

 Sayfa Sayısı : 10 Sayfa
 Dökümanın Dili : Türkçe
 Döküman Türü : Word Dökümanı
 Kaynakça :
 Resim/Şekil :
 Tablo :



Sitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen iletişim mailimizden bize durumu bildirin. Siteden kaldırılması için mesajınıza dosya numarasınıda ekleyerek bize yardım merkezinden gönderebilirsiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No: 79086 - | Yardım Merkezi için Lütfen Buraya Tıklayınız

Eğer üye iseniz giriş yapıp dökümanı indirebilirsiniz.


Ödevin Özeti

ÇARPANLARA AYIRMA Bir Polinomun Çarpanları: Tanım..: P(x) polinomu sabit olmayan ve derecesi P(x)’in derecesinden küçük olan polinomları çarpımı olarak yazabiliyorsa bu polinomlardan her birine, P(x) polinomun bir çarpımı denir. Q(x)=x+2 T(x)=x2-1 Polinomlarının çarpımı olan P(x) polinomunu bulalım: P(x)=Q(x).T(x)=(x+2).( x2-1)=x3+2x2-x-2’dir. Q(x)=(x+2) ve T(x)= x2-1 Polinomlarına P(x)= x3+2x2-x-2 polinomunun çarpanları denir. P(x)= x3+2x2-x-2 polinomunu, polinomların çarpımı biçiminde yazmaya,P(x) polinomunu çarpanlarına ayırma denir. P(x)=Q(x).T(x) X2+2x2-x-2=(x+2).( x2-1)=(x+2).(x-1).(x+1)’dir . çarpım çarpanlar çarpanlar Bir polinomu birden fazla polinomun çarpımı biçiminde yazmaya, bu polinomu çarpanlarına ayırma denir. Tanım..:R(x)’de bir polinom bir veya birden fazla dereceden birden fazla polinomun çarpımı biçimine yazılmış ise, bu polinom R(x)’de çarpanlara ayrılmıştır veya indirgenmiştir denir. Örnek:3x3-12x=3x(x2-4)=3x(x-2).(x+2) biçiminde yazılabilir.Çarpma işlemleri yapılarak bu eşitliğin doğruluğu görebilir. Her P(x) polinomu R(x)’de çarpanlarına ayrılamaz. Tanım:R(x)’de, bir veya daha fazla dereceden birden fazla polinomun çarpımı biçimde yazılamayan polinomlara R(x)’de indirgenemez polinom denir. Başka bir yönden açıklarsak, sabit olmayan ve birden fazla polinomun çarpımı biçiminde yazılamayan polinomlara indirgenemeyen polinomlar denir. Boş katsayısı 1 olan indirgenemeyen polinomlara ise asal polinom denir. Örneğin; x2+1  R(x) 3x2 +9  R(x) x2+2x+4  R(x) 2 x2-3x+7  R(x) Polinomların her biri indirgenemez polinomdur. Bunlardan baştan ikisinin katsayıları 1 olduğu için bu ikisinde asal polinomdur. x2-2=(x- 2 ).(x+ 2 ) olduğundan, R(x) de indirgenebilir polinom olduğu halde; x2-2 polinomu Z(x)’de indirgenemez polinomdur:bunun gibi; x2- 1 =(x- 1 ).(x + 1 ) olduğu için x2- 1 polinomu R(x) ve Q(x) indirgenebilir. Polinomdur, fakat 4 2 2 4 x2- 1 polinomu Z(x) ‘de indirgenemez. 4 Polinomları Çarpanlara Ayırma Yöntemleri Polinomların çarpanlara ayrılmasında genel bir yöntem yoktur. Ancak bazı özel durumlara göre, çarpanlara Ayırma yöntemleri vardır. 1-Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma: Bir ifadede ortak çarpan varsa bu ifade çarpmanın toplama üzerine dağılma özelliğinden yararlanarak çarpanlara ayrılır. -1- Ortak çarpan parantezine olarak çarpanlara ayırmada ortak olan çarpanların en küçük üslüsü olan ortak çarpandır. Örnekler: 1- 2y2(x-7)+y(7-x)= 2y2(x-7)-y(7-x) = (x-7).( 2y2-y) = (x-7) .( 2y2-y)y =... - Üye olup tamamını bilgisayarınıza kaydedebilir, üzerinde değişiklik yapabilir, yazıcı çıktısı alabilirsiniz.