Kullanıcı Adı

Şifre


          Şifremi Unuttum?



İletişim

  • 0216 550 46 26
  • 0531 409 17 67


Etiket Bulutu

İstanbul Özel Ders hooke veri ambarı 2. sınıf ali kabil fizik staj yutma fizik esneklik cumhuriyet atatürk müzik özlemek sendikalist izmirin içinde zeval resmi mektup sosyal içerikli öyküler teneke ambalaj temel podzol topraklar hardal pastırma pastacı atışma mum boyası ingilizce öğretim meslekler resimleri ağaçların faydaları iletişim nedir deney analizi anitkabir afrika kıtası akarsuları kalkışılma ezel gönlü kara elektro teknik algılama yönetimi öğreticilik duygusal fen öğretimi kromozon 18 hastaligi para basma söyleşme doğanın dengesi ve bozulması 1500 tarihi olaylar izmir inönü lisesi yabgu hesap etmek özkütle soru türkiye iller haritası organizasyonun gelişim süreci muammer lütfi kumral ada fenalık etmek 1. dereceden 1 bilinmeyenli denklemleri anlat baca başı ısı yalıtkanlığı perakende ve toptan satış ters trigonometrik fonksiyonlar küfretmek yayalar söz zinciri kayıt dışı ekonomi yol yapım makinaları bakım ve onarımı sığıntı zevk ehli kuru pil latince isimler ilkbaharın özellikleri bach turaç fotoğraf maas yazisi çelebi mehmet alfa edison iç bükün içsel enerji milli egemenlik ve demokrasi günlük türü orman endüstri oynama! filmci sancılı tartılma 1925 iletişim proje temelli öğretim göncü müstebit fosfatlama süt ürünleri abdullah bin çıkartılma intizam çocuklarda tembellik sefer tası itki ingilizce dersi bakteriyosin itaat sizden iyi olmasın geçim yolu sağlıklı olmak


ÇARPANLARA AYIRMA


Ödev Bilgileri

 Sayfa Sayısı : 10 Sayfa
 Dökümanın Dili : Türkçe
 Döküman Türü : Word Dökümanı
 Kaynakça :
 Resim/Şekil :
 Tablo :



Sitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen iletişim mailimizden bize durumu bildirin. Siteden kaldırılması için mesajınıza dosya numarasınıda ekleyerek bize yardım merkezinden gönderebilirsiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No: 79086 - | Yardım Merkezi için Lütfen Buraya Tıklayınız

Eğer üye iseniz giriş yapıp dökümanı indirebilirsiniz.


Ödevin Özeti

ÇARPANLARA AYIRMA Bir Polinomun Çarpanları: Tanım..: P(x) polinomu sabit olmayan ve derecesi P(x)’in derecesinden küçük olan polinomları çarpımı olarak yazabiliyorsa bu polinomlardan her birine, P(x) polinomun bir çarpımı denir. Q(x)=x+2 T(x)=x2-1 Polinomlarının çarpımı olan P(x) polinomunu bulalım: P(x)=Q(x).T(x)=(x+2).( x2-1)=x3+2x2-x-2’dir. Q(x)=(x+2) ve T(x)= x2-1 Polinomlarına P(x)= x3+2x2-x-2 polinomunun çarpanları denir. P(x)= x3+2x2-x-2 polinomunu, polinomların çarpımı biçiminde yazmaya,P(x) polinomunu çarpanlarına ayırma denir. P(x)=Q(x).T(x) X2+2x2-x-2=(x+2).( x2-1)=(x+2).(x-1).(x+1)’dir . çarpım çarpanlar çarpanlar Bir polinomu birden fazla polinomun çarpımı biçiminde yazmaya, bu polinomu çarpanlarına ayırma denir. Tanım..:R(x)’de bir polinom bir veya birden fazla dereceden birden fazla polinomun çarpımı biçimine yazılmış ise, bu polinom R(x)’de çarpanlara ayrılmıştır veya indirgenmiştir denir. Örnek:3x3-12x=3x(x2-4)=3x(x-2).(x+2) biçiminde yazılabilir.Çarpma işlemleri yapılarak bu eşitliğin doğruluğu görebilir. Her P(x) polinomu R(x)’de çarpanlarına ayrılamaz. Tanım:R(x)’de, bir veya daha fazla dereceden birden fazla polinomun çarpımı biçimde yazılamayan polinomlara R(x)’de indirgenemez polinom denir. Başka bir yönden açıklarsak, sabit olmayan ve birden fazla polinomun çarpımı biçiminde yazılamayan polinomlara indirgenemeyen polinomlar denir. Boş katsayısı 1 olan indirgenemeyen polinomlara ise asal polinom denir. Örneğin; x2+1  R(x) 3x2 +9  R(x) x2+2x+4  R(x) 2 x2-3x+7  R(x) Polinomların her biri indirgenemez polinomdur. Bunlardan baştan ikisinin katsayıları 1 olduğu için bu ikisinde asal polinomdur. x2-2=(x- 2 ).(x+ 2 ) olduğundan, R(x) de indirgenebilir polinom olduğu halde; x2-2 polinomu Z(x)’de indirgenemez polinomdur:bunun gibi; x2- 1 =(x- 1 ).(x + 1 ) olduğu için x2- 1 polinomu R(x) ve Q(x) indirgenebilir. Polinomdur, fakat 4 2 2 4 x2- 1 polinomu Z(x) ‘de indirgenemez. 4 Polinomları Çarpanlara Ayırma Yöntemleri Polinomların çarpanlara ayrılmasında genel bir yöntem yoktur. Ancak bazı özel durumlara göre, çarpanlara Ayırma yöntemleri vardır. 1-Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma: Bir ifadede ortak çarpan varsa bu ifade çarpmanın toplama üzerine dağılma özelliğinden yararlanarak çarpanlara ayrılır. -1- Ortak çarpan parantezine olarak çarpanlara ayırmada ortak olan çarpanların en küçük üslüsü olan ortak çarpandır. Örnekler: 1- 2y2(x-7)+y(7-x)= 2y2(x-7)-y(7-x) = (x-7).( 2y2-y) = (x-7) .( 2y2-y)y =... - Üye olup tamamını bilgisayarınıza kaydedebilir, üzerinde değişiklik yapabilir, yazıcı çıktısı alabilirsiniz.