abone ol




Kullanıcı Adı

Şifre


          Şifremi Unuttum?




İletişim

  • 0216 550 46 26
  • 0531 409 17 67


Etiket Bulutu

İstanbul Özel Ders aksilik düzgün geometrik anadilin önemi mücevher kuru direnç deneyi eğrisel hareket ateş çıkmak hâd hz idris nekroz dogrudan pazarlama aylar ve mevsimler etkinlik nedir arı dalağı atmosfer basıncı girişken futur histeri sermayeci albert camus yabancı seçme hakkı simetri nedir teknolojinin yaraları yol bilgisi dersi insan kaynaklari elbe nehri bursluluk sınavı sonucu devir illüstrasyon matematik grafikler hidrolik fren sudak su vermek yünlü kumaslarda apre islemleri kadın girişimciler heyecan matematik dönem ödevi eyleme paket analog digital analog dönüştürücü ilişkiler bilanço analiz programı erime donma it dehidrasyon stratejik yönetimin amaçları dinleti fortran arılar ve bal yapma criminal 11 eylül 2003 amerika mause güvenirlik ve geçerlik pusula ali osman atak kirlihanım peyniri pasak performans ve proje ödev cumhuriyet bayramı atatürkçülüğün tanımı ve önemi anlayış hak, özgürlük, eşitlik ve demokrasi mürt olmak başarı ikindi artikeller kılınma izlemek yer mantarı yanı başında (veya yanı başına) flash bellek yarı mamul cüppe revü temaşa motorlar için alternatif yakıtlar münasip transförmatör ph nedir araçlarda güvenlik oh demek prince kitabı tarihçilik nosyon zaman dizini salt sıfır mavi gezegen teşne olmak gabriel garcia marquez lügol zoo story raspa modern portföy yönetimi ışık ve ses tennis seats ayyar asidimetre bütçeyi etkileyen faktörler


ÇARPANLARA AYIRMA


Ödev Bilgileri

 Sayfa Sayısı : 10 Sayfa
 Dökümanın Dili : Türkçe
 Döküman Türü : Word Dökümanı
 Kaynakça :
 Resim/Şekil :
 Tablo :



Sitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen iletişim mailimizden bize durumu bildirin. Siteden kaldırılması için mesajınıza dosya numarasınıda ekleyerek bize yardım merkezinden gönderebilirsiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No: 79086 - | Yardım Merkezi için Lütfen Buraya Tıklayınız

Eğer üye iseniz giriş yapıp dökümanı indirebilirsiniz.


Ödevin Özeti

ÇARPANLARA AYIRMA Bir Polinomun Çarpanları: Tanım..: P(x) polinomu sabit olmayan ve derecesi P(x)’in derecesinden küçük olan polinomları çarpımı olarak yazabiliyorsa bu polinomlardan her birine, P(x) polinomun bir çarpımı denir. Q(x)=x+2 T(x)=x2-1 Polinomlarının çarpımı olan P(x) polinomunu bulalım: P(x)=Q(x).T(x)=(x+2).( x2-1)=x3+2x2-x-2’dir. Q(x)=(x+2) ve T(x)= x2-1 Polinomlarına P(x)= x3+2x2-x-2 polinomunun çarpanları denir. P(x)= x3+2x2-x-2 polinomunu, polinomların çarpımı biçiminde yazmaya,P(x) polinomunu çarpanlarına ayırma denir. P(x)=Q(x).T(x) X2+2x2-x-2=(x+2).( x2-1)=(x+2).(x-1).(x+1)’dir . çarpım çarpanlar çarpanlar Bir polinomu birden fazla polinomun çarpımı biçiminde yazmaya, bu polinomu çarpanlarına ayırma denir. Tanım..:R(x)’de bir polinom bir veya birden fazla dereceden birden fazla polinomun çarpımı biçimine yazılmış ise, bu polinom R(x)’de çarpanlara ayrılmıştır veya indirgenmiştir denir. Örnek:3x3-12x=3x(x2-4)=3x(x-2).(x+2) biçiminde yazılabilir.Çarpma işlemleri yapılarak bu eşitliğin doğruluğu görebilir. Her P(x) polinomu R(x)’de çarpanlarına ayrılamaz. Tanım:R(x)’de, bir veya daha fazla dereceden birden fazla polinomun çarpımı biçimde yazılamayan polinomlara R(x)’de indirgenemez polinom denir. Başka bir yönden açıklarsak, sabit olmayan ve birden fazla polinomun çarpımı biçiminde yazılamayan polinomlara indirgenemeyen polinomlar denir. Boş katsayısı 1 olan indirgenemeyen polinomlara ise asal polinom denir. Örneğin; x2+1  R(x) 3x2 +9  R(x) x2+2x+4  R(x) 2 x2-3x+7  R(x) Polinomların her biri indirgenemez polinomdur. Bunlardan baştan ikisinin katsayıları 1 olduğu için bu ikisinde asal polinomdur. x2-2=(x- 2 ).(x+ 2 ) olduğundan, R(x) de indirgenebilir polinom olduğu halde; x2-2 polinomu Z(x)’de indirgenemez polinomdur:bunun gibi; x2- 1 =(x- 1 ).(x + 1 ) olduğu için x2- 1 polinomu R(x) ve Q(x) indirgenebilir. Polinomdur, fakat 4 2 2 4 x2- 1 polinomu Z(x) ‘de indirgenemez. 4 Polinomları Çarpanlara Ayırma Yöntemleri Polinomların çarpanlara ayrılmasında genel bir yöntem yoktur. Ancak bazı özel durumlara göre, çarpanlara Ayırma yöntemleri vardır. 1-Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma: Bir ifadede ortak çarpan varsa bu ifade çarpmanın toplama üzerine dağılma özelliğinden yararlanarak çarpanlara ayrılır. -1- Ortak çarpan parantezine olarak çarpanlara ayırmada ortak olan çarpanların en küçük üslüsü olan ortak çarpandır. Örnekler: 1- 2y2(x-7)+y(7-x)= 2y2(x-7)-y(7-x) = (x-7).( 2y2-y) = (x-7) .( 2y2-y)y =... - Üye olup tamamını bilgisayarınıza kaydedebilir, üzerinde değişiklik yapabilir, yazıcı çıktısı alabilirsiniz.