abone ol




Kullanıcı Adı

Şifre


          Şifremi Unuttum?




İletişim

  • 0216 550 46 26


Etiket Bulutu

İstanbul Özel Ders süper çarpan fransa denizcilik ditme basit motor öss türkçe soruları future continious tense iki kağıt kimyasalları paralel r-l-c devresi sac malzeme çekmesi amniyosentez integral öys teressüp ensafalit anüri bilgisayar dersi corum eko sistemin bozulmasının sonuçları minaraller duvar ticaret tatlıca boru mengenesi paratoner vurgun autocad alan hesapla kontrpuan preeklampsi maliye tez konulari 3. sınıf test sperm canlı ve cansız varlıkların yapı alacak yönetimi cin nedir sembolist teadül müzik ve spor haftalık ,ahmet haşim oto motor türkiyenin denizleri tornalama çokgenlerin kenar özellikleri işkembe çorbası kum hacim hesabi nerden eyyup kalem beyi denklemler test sporcu biyolojik moleküller müphemlik bakara konvansiyonel türk modernleşmesi bitümlü kömür akut koroner sendrom ilk psikolojik roman baskın roman özeti parodi ufaltma hint deniz seferleri araba tarihçesi doğum kontrolü açık öğretim sınavları taşlıcalı yahya tutkal nipel sesçi toplumsal yaşamın kuralları asetilen kaynak atatürkçülügün toplumu için önemi işletmek gaza serçegiller dar hat g.t.i.p işletmelerde çıkar ilişkileri yönetimi enformasyon memuru nedir elektronik baskı devre ölçülebilir kalabalık amper hesaplama yergi 2005 öss soruları ilişki pazarlaması kafasına koymak vatandaşlık dersi köleler biyoloji projesi bilgisayar amaçları skeç boslu yol açmak atatürkün sözlerini açıkla hayvanlar besinlerini neden üretemezler uluslararası ilişkiler ve güvenlik hastalık yapan virüsler toprak alkali metaller


ÇARPANLARA AYIRMA


Ödev Bilgileri

 Sayfa Sayısı : 10 Sayfa
 Dökümanın Dili : Türkçe
 Döküman Türü : Word Dökümanı
 Kaynakça :
 Resim/Şekil :
 Tablo :



Sitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen iletişim mailimizden bize durumu bildirin. Siteden kaldırılması için mesajınıza dosya numarasınıda ekleyerek bize yardım merkezinden gönderebilirsiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No: 79086 - | Yardım Merkezi için Lütfen Buraya Tıklayınız

Eğer üye iseniz giriş yapıp dökümanı indirebilirsiniz.


Ödevin Özeti

ÇARPANLARA AYIRMA Bir Polinomun Çarpanları: Tanım..: P(x) polinomu sabit olmayan ve derecesi P(x)’in derecesinden küçük olan polinomları çarpımı olarak yazabiliyorsa bu polinomlardan her birine, P(x) polinomun bir çarpımı denir. Q(x)=x+2 T(x)=x2-1 Polinomlarının çarpımı olan P(x) polinomunu bulalım: P(x)=Q(x).T(x)=(x+2).( x2-1)=x3+2x2-x-2’dir. Q(x)=(x+2) ve T(x)= x2-1 Polinomlarına P(x)= x3+2x2-x-2 polinomunun çarpanları denir. P(x)= x3+2x2-x-2 polinomunu, polinomların çarpımı biçiminde yazmaya,P(x) polinomunu çarpanlarına ayırma denir. P(x)=Q(x).T(x) X2+2x2-x-2=(x+2).( x2-1)=(x+2).(x-1).(x+1)’dir . çarpım çarpanlar çarpanlar Bir polinomu birden fazla polinomun çarpımı biçiminde yazmaya, bu polinomu çarpanlarına ayırma denir. Tanım..:R(x)’de bir polinom bir veya birden fazla dereceden birden fazla polinomun çarpımı biçimine yazılmış ise, bu polinom R(x)’de çarpanlara ayrılmıştır veya indirgenmiştir denir. Örnek:3x3-12x=3x(x2-4)=3x(x-2).(x+2) biçiminde yazılabilir.Çarpma işlemleri yapılarak bu eşitliğin doğruluğu görebilir. Her P(x) polinomu R(x)’de çarpanlarına ayrılamaz. Tanım:R(x)’de, bir veya daha fazla dereceden birden fazla polinomun çarpımı biçimde yazılamayan polinomlara R(x)’de indirgenemez polinom denir. Başka bir yönden açıklarsak, sabit olmayan ve birden fazla polinomun çarpımı biçiminde yazılamayan polinomlara indirgenemeyen polinomlar denir. Boş katsayısı 1 olan indirgenemeyen polinomlara ise asal polinom denir. Örneğin; x2+1  R(x) 3x2 +9  R(x) x2+2x+4  R(x) 2 x2-3x+7  R(x) Polinomların her biri indirgenemez polinomdur. Bunlardan baştan ikisinin katsayıları 1 olduğu için bu ikisinde asal polinomdur. x2-2=(x- 2 ).(x+ 2 ) olduğundan, R(x) de indirgenebilir polinom olduğu halde; x2-2 polinomu Z(x)’de indirgenemez polinomdur:bunun gibi; x2- 1 =(x- 1 ).(x + 1 ) olduğu için x2- 1 polinomu R(x) ve Q(x) indirgenebilir. Polinomdur, fakat 4 2 2 4 x2- 1 polinomu Z(x) ‘de indirgenemez. 4 Polinomları Çarpanlara Ayırma Yöntemleri Polinomların çarpanlara ayrılmasında genel bir yöntem yoktur. Ancak bazı özel durumlara göre, çarpanlara Ayırma yöntemleri vardır. 1-Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma: Bir ifadede ortak çarpan varsa bu ifade çarpmanın toplama üzerine dağılma özelliğinden yararlanarak çarpanlara ayrılır. -1- Ortak çarpan parantezine olarak çarpanlara ayırmada ortak olan çarpanların en küçük üslüsü olan ortak çarpandır. Örnekler: 1- 2y2(x-7)+y(7-x)= 2y2(x-7)-y(7-x) = (x-7).( 2y2-y) = (x-7) .( 2y2-y)y =... - Üye olup tamamını bilgisayarınıza kaydedebilir, üzerinde değişiklik yapabilir, yazıcı çıktısı alabilirsiniz.